Soft computing is a term applied to a field within computer science which is characterized by the use of inexact solutions to computationally-hard tasks such as the solution of NP-complete problems, for which an exact solution cannot be derived in polynomial time.
Soft Computing became a formal Computer Science area of study in early 1990's.[1] Earlier computational approaches could model and precisely analyze only relatively simple systems. More complex systems arising in biology, medicine, the humanities, management sciences, and similar fields often remained intractable to conventional mathematical and analytical methods. That said, it should be pointed out that simplicity and complexity of systems are relative, and many conventional mathematical models have been both challenging and very productive. Soft computing deals with imprecision, uncertainty, partial truth, and approximation to achieve practability, robustness and low solution cost. Components of soft computing include:
Generally speaking, soft computing techniques resemble biological processes more closely than traditional techniques, which are largely based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis (as in finite element analysis). Soft computing techniques are intended to complement each other.
Unlike hard computing schemes, which strive for exactness and full truth, soft computing techniques exploit the given tolerance of imprecision, partial truth, and uncertainty for a particular problem. Another common contrast comes from the observation that inductive reasoning plays a larger role in soft computing than in hard computing.